Lead and Copper	Date					Units		Likely Source of Contamination
	Sampled		Level (AL)	Percentile	Over AL		Violation	
Copper	8/3/2007	1.3	1.3	0.26	0	ppm	N	Erosion of natural deposits; Leaching
								from wood preservatives; Corrosion
								of household plumbing systems
Lead	8/3/2007	0	15	9.3	1	ppb	N	Corrosion of household plumbing
								systems, Erosion of natural deposits.

Regulated Cotaminants

Disinfectant an Disinfectant	d Collection	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Sources of Contamination
By-products	Date	Detected	Detected					
Chlorine		0.7	.27	MRDLG = 4	MRDL = 4	ppm	Ν	Water additive used to control microbes.
Haloacetic Acid (HAA5)*	s	1.04	1.04 - 1.04	No Goal for the total	60	ppb	N	By-product of drinking water chlorination
TotalTrihalomethanes (TThm)*		1.08	1.8 - 1.8	No Goal for the total	80	Ppb	N	By-product of drinking water chlorination

Inorganic Contaminants	Collection	Highest Level	Range of Levels	MCLG	MCL	Units	Violation	Likely Sources of Contamination
	Date	Detected	Detected					
								Erosion of natural deposits: Runoff from orchards, Runoff from glass and electronics production wastes
								Discharge of drilling wastes, Discharge form metal refineries, Erosion of natural deposits.
								Erosion of natural deposits, Water additive which promotes strong teeth, Discharge from fertilizer and aluminum factories.